История акпп: кто придумал коробку автомат - maslo26.ru

История акпп: кто придумал коробку автомат

Кто изобрел автоматическую коробку передач

Идея создания автоматической коробки передач появилась практически одновременно с появлением автомобиля, оснащенного МКПП. При этом автопроизводители, изобретатели и энтузиасты из разных стран начали работать над агрегатом.

В результате уже в самом начале 20-го века стали появляться опытные образцы, которые имели трансмиссию, похожую на современный автомат. В этой статье мы поговорим о том, как создавалась и когда появилась первая АКПП, познакомимся с историей автоматической трансмиссии, а также ответим на вопрос, кто изобрел коробку автомат.

Читайте в этой статье

Кто изобрел коробку автомат и когда появилась первая АКПП

Как известно, трансмиссия является вторым по важности агрегатом после ДВС. При этом появление АКПП стало настоящим прорывом, так как благодаря такой коробке передач значительно повышается не только комфорт, но и безопасность при управлении автомобилем.

Такая КПП является системой, состоящей из гидротрансформатора (ГДТ) и планетарной коробки. Принципы и основы планетарной передачи были известны еще в средние века, а гидротрансформатор создал немец Герман Феттингер в начале 20-го века.

Родился Сарафян в 1895 году. Его семья оказалась в США в результате печально известного Геноцида армян, который имел место быть в Османской империи. Обосновавшись в Чикаго, Асатур Сарафян сменил свое имя, став Оскаром Бэнкером.

Талантливый изобретатель создал различные полезные устройства, среди которых можно выделить несколько незаменимых сегодня решений (например, шприц-пистолет для смазки), однако главным его достижением является изобретение первой автоматической гидромеханической коробки передач. В свою очередь, General Motors (GM), которая ранее устанавливала полуавтоматическую коробку передач на свои модели, первой перешла на АКПП.

История создания автоматической коробки передач

Итак, важнейшим элементом, благодаря которому стало возможным появление полноценной АКПП, является гидротрансформатор.

Изначально ГДТ появился в судостроении. Причина – вместо низкооборотистых паровых двигателей ближе к концу 19-го века появились более мощные паровые турбины. Такие турбины соединялись с винтом напрямую, что неизбежно привело к возникновению целого ряда технических проблем.

Решением оказалось изобретение Г. Феттингера, который предложил гидравлическую машину, где лопастные колеса гидродинамической передачи, насос, турбина и реактор были объединены в одном корпусе.

ГДТ Феттингера минимизировал потери полезной энергии, КПД устройства оказался высоким. На практике, указанный гидродинамический трансформатор, в среднем, обеспечивал на судах КПД около 90% и даже больше.

Вернемся к коробкам передач на автомобилях. В самом начале 20-го века (1904 год) изобретатели братья Стартевенты из города Бостон, США, представили раннюю версию автоматической коробки.

Следующими автоматическую коробку начали ставить в компании Ford. Легендарная модель Model-T была оснащена планетарной коробкой передач, которая получила две скорости для движения вперед, а также заднюю передачу. Управление КПП было реализовано при помощи педалей.

Далее появилась коробка от компании Reo на моделях General Motors. Такая трансмиссия вполне может считаться первой РКПП, так как это была механическая коробка с автоматизированным сцеплением. Немного позже стала использоваться и планетарная система передач, еще больше приблизив момент появления полноценных гидромеханических автоматов.

Другими словами, речь идет об исполнительных механизмах АКПП (фрикционы, ленточный тормоз). Также в те годы реализовать эффективное управление данными механизмами не составляло труда. Еще необходимость выровнять скорости отдельных элементов АКПП отсутствовала, так как все шестерни планетарной передачи находятся в постоянном зацеплении.

Если сравнить такую схему с попытками автоматизировать работу механической коробки, в то время это было крайне сложной задачей. Основной проблемой являлось то, что в те годы не было эффективных, быстрых и надежных сервомеханизмов (сервоприводов).

Указанные механизмы необходимы для того, чтобы перемещать шестерни или муфты включения для введения в зацепление. Сервомеханизмы также должны обеспечить большое усилие и рабочий ход, особенно если сравнивать усилие для сжатия пакета фрикционов или затяжки ленточного тормоза АКПП.

Качественное решение было найдено только ближе к середине XX века, а массовой роботизированная механика стала только за последние 10-15 лет (например, АМТ или преселективная коробка DSG).

Дальнейшее развитие коробки автомат: эволюция гидромеханической АКПП

Перед тем, как переходить к АКПП, нужно упомянуть коробку передач Уильсона. Водитель выбирал передачу при помощи подрулевого переключателя, а включение производилось посредством нажатия на отдельную педаль.

Такая трансмиссия была прообразом преселективной коробки передач, так как водитель заранее выбирал передачу, при этом ее включение осуществлялось только после нажатия на педаль, которая стояла на месте педали сцепления МКПП.

Данное решение облегчало процесс управления ТС, переключения передач требовали минимум времени по сравнению с МКПП, которые в те годы не имели синхронизаторов. При этом значимая роль коробки Уильсона заключается в том, что это первая КПП с переключателем режимов, которая напоминает современные аналоги (режимы P-R-N-D).

Такая трансмиссия представляла собой гидротрансформатор (гидромуфту) и планетарную коробку передач с автоматическим гидравлическим управлением. Управление было реализовано с учетом скорости движения автомобиля, а также положения дроссельной заслонки.

Коробка Hydra-Matic ставилась как на модели GM, так и на Bentley, Rolls-Royce, Lincoln и т.д. В начале 50-х специалисты Mercedes-Benz взяли данную коробку за основу и разработали собственный аналог, который работал по схожему принципу, однако имел целый ряд отличий в плане конструкции.

В 80-х стала прослеживаться тенденция к постоянному увеличению числа передач. В автоматических коробках сначала появилась четвертая передача, то есть повышенная. Одновременно стала использоваться и функция блокировки гидротрансформатора.

Также четырехступенчатые автоматы стали управляться при помощи ЭБУ, что дало возможность избавиться от многих механических элементов управления, заменив их соленоидами.

Например, первыми внедрение электронной системы управления автоматической коробкой передач реализовали специалисты Toyota в 1983 г. Далее Ford в 1987 году также перешел на использование электроники для управления повышающей передачей и блокировочной муфтой ГДТ.

Для этого увеличивается общее количество передач, скорость переключений стала очень высокой. Сегодня можно встретить АКПП, которые имеют 5, 6 и более «скоростей». Основная задача – успешно конкурировать с преселективными роботизированными коробками типа DSG.

Параллельно происходит и постоянное усовершенствование блоков управления АКПП, а также программного обеспечения. Изначально это были системы, которые только определяли момент переключения передачи и отвечали за качество включений.

Позже появилась и возможность ручного управления АКПП (например, Tiptronic), когда водитель может самостоятельно определять моменты переключения передач подобно механической коробке. Дополнительно коробка автомат получила расширенные возможности в плане самодиагностики, контроля температуры трансмиссионной жидкости и т.д.

Управление автомобилем с АКПП: как пользоваться коробкой — автомат, режимы работы автоматической коробки, правила использования данной трансмиссии, советы.

Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.

Гидротрансформатор АКПП (конвертер крутящего момента, ГДТ). Назначение, устройство гидротрансформатора, принцип работы и особенности.

Соленоид АКПП: устройство соленоидов, принцип работы. Частые неисправности и поломки клапанов-соленоидов, диагностика, ремонт и замена.

Автоматическая коробка передач (АКПП, АКП) «классического» типа с гидротрансформатором: устройство и принцип работы. Плюсы и минусы гидромеханической АКПП.

Пробуксовка автоматической коробки при переключении передач: основные причины, по которым пробуксовывает автомат. Диагностика коробки, устранение неполадок.

В коммунизм на автомате: как разрабатывали АКП в СССР

В конце прошлого века отечественные автомобилисты воочию встретили невиданные доселе автомобильные опции – электроприводы зеркал и стёкол, кондиционеры и автоматические трансмиссии, которые в наше время стали привычной обыденностью даже в бюджетном сегменте. Но любопытно то, что подобные «навороты» встречались и на советских легковушках! Сегодня мы расскажем об истории появления и технических особенностях АКП на советских легковых автомобилях.

Е ще в тридцатые годы в СССР начали серьезно заниматься гидромуфтами и гидротрансформаторами, для чего в Ленинграде было создано Бюро Гидравлических Редукторов.

В дальнейшем работы по гидропередачам велись на заводе ЗИС, где в 1949-м сформировали бюро гидравлических агрегатов. Здесь работали над ГМП для всех типов автомобилей, которые выпускал завод — легковушек, автобусов и даже грузовиков. Кроме того, разработкой гидромеханических трансмиссий в конце сороковых годов активно занимались и специалисты Научно-исследовательского автомобильного и автомоторного института (НАМИ). Однако на тот момент в СССР еще не было готового варианта полностью автоматической коробки передач, которую можно было бы выпускать серийно и оснащать ею легковые автомобили.

Made in USA, адаптировано в СССР

В начале пятидесятых годов автоматическая трансмиссия получила распространение на многих американских моделях: покупатели в США с энтузиазмом восприняли возможность упростить управление машиной и повысить уровень комфорта, избавившись от необходимости самостоятельно переключать передачи.

Поскольку горьковские инженеры изначально ориентировались на конструкцию автомобилей из США, а первые модели ГАЗ являлись лицензионными копиями легковушки и грузовика Ford, было принято решение внедрить АКП на новых моделях Горьковского автозавода — в частности, будущей Волге.

Ведь преимущество подобных трансмиссий на ГАЗе поняли задолго до внедрения автомата: еще на автомобиле ЗИМ механическую коробку передач оснастили гидромуфтой, которая находилась между маховиком и обычным сцеплением. Гидромуфта позволяла водителю представительского седана затормозить и впоследствии тронуться без выключения сцепления и передачи, что заметно облегчало управление автомобилем и повышло плавность хода. Однако такая «полуавтоматическая» коробка не могла сравниться с настоящей АКП, конструкцию которых горьковчанам нужно было разработать достаточно быстро. Для этого решили использовать чужие наработки – выбор был сделан в пользу американских.

Еще не автомат, уже не просто механика: в трансмисии ЗИМ появилось интересное новшество – гидромуфта. Она позволяла реже пользоваться сцеплением.

С этой целью были закуплены несколько сделанных в США автомобилей разных марок, оснащенных автоматом — в частности, Ford Customline, Dodge Coronet и Plymouth Savoy.

Но еще до этого в СССР занимались гидромеханическими коробками передач (ГМП) для легковых автомобилей – к примеру, в НАМИ для установки на Победу разработали трансмиссию Д2, а на экспериментальном минивэне НАМИ-013 стояла коробка передач НАМИ-ДК. Однако агрегаты эти были слишком «сырыми» и на момент работ по будущей Волге ГАЗ М-21 находились в стадии доводки.

Именно поэтому в Горьком разобрали и тщательно изучили трёхступенчатую трансмиссию Ford-O-Matic, которую для Ford в 1950 году разработала специализированная американская компания BorgWarner. Правда, скопировать «один в один» фордовскую коробку не получилось хотя бы по той причине, что она была рассчитана на шести- и восьмицилиндровые двигатели, в то время как будущая «двадцать первая» должна была оснащаться 2,5-литровым четырехцилиндровым мотором мощностью всего 70 л.с. Именно поэтому новая коробка получила другие передаточные числа. Интересно, что ГМП ГАЗ-21 в обычном режиме Д (движение) использовала лишь вторую и третью передачи, а первая включалась принудительно в режиме П (пониженный), который нужно было использовать для преодоления крутых подъемов и спусков.

Америка говорит «да» или ваша лучшая покупка: компания Ford не стеснялась, рекламируя свою новинку – автоматическую трансмиссию

Читать еще:  Как часто нужно менять масло в двигателе

Необычной трансмиссией оснастили небольшое количество Волг первых выпусков — в двух партиях было собрано около 1 500 экземпляров ГАЗ М-21 с ГМП. Вскоре от этой затеи отказались в пользу обычной трехступенчатой механики – эту историю «автоматического провала мы рассказывали в отдельном материале. Главным образом, дело было в том, что из-за дефицита специального масла типа ATF и довольно низкого уровня технической культуры коробки довольно быстро выходили из строя, хотя конструктивно они были достаточно надежными, что подтвердили как испытательные пробеги прототипов Волги, так и эксплуатация серийных автомобилей при соблюдении технического регламента.

Издание второе и третье: трансмиссии ГАЗ-13/ГАЗ-14

В дальнейшем данную конструкцию с некоторыми доработками использовали на «номенклатурной» Чайке ГАЗ-13 и двух поколениях Волг-«догонялок» с «чайковским» силовым агрегатом.

ГАЗ-13 была интересна как двигателем V8, так и трехступенчатым «автоматом» с гидротрансформатором

Американские мотивы заметны не только во внешности, но и в конструкции ГАЗ-13

Поскольку V-образная «восьмерка» Чайки была почти втрое мощнее двигателя Волги, автомат потребовал изменения передаточных чисел планетарной части и коэффициента трансформации у гидротрансформатора. Кроме того, ГДТ Чайки уже охлаждался жидкостью, в то время как на ГАЗ-21 из-за небольшого объема системы охлаждения пришлось остановиться на «воздушном» варианте. Передачи переключались с помощью двух многодисковых сцеплений и двух ленточных тормозов – переднего (второй передачи) и заднего (первой передачи и заднего хода).

ГМП ГАЗ-13 была разработана советскими конструкторами с «оглядкой» на американские «автоматы»

Отличительной технической особенностью ГМП ГАЗ-13 было наличие муфты свободного хода, которая позволяла мягкое переключение с первой на вторую передачу без рывков. Однако из-за наличия такого дополнительного элемента на включенной первой передаче Чайка не тормозила двигателем, что вынудило конструкторов предусмотреть на кнопочном селекторе отдельный режим Т (торможение двигателем), который нужно было включать при езде по неровной дороге или спуске с горы. На практике же данный режим несколько настораживал водителей, поскольку коробка на подъемах и спусках могла постоянно переключаться «вверх-вниз» в диапазоне скоростей 36-40 км/ч, что было чревато потерей сцепления колёс с дорогой.

Также в коробке ГАЗ-13 существовал и режим «кикдаун» (или «полный дроссель» в советской версии) — принудительное переключение на низшую передачу при резком нажатии педали в пол для более эффективного набора скорости при обгоне.

На стоянке Чайка фиксировалась не с помощью режима P, как на более современных автоматах, а центральным стояночным гаком на фланце КПП, конструкция которого была идентична таковому на коробке Chrysler Torqueflite.

Переключение режимов трансмиссии на ГАЗ-13 осуществлялось не рычагом, а кнопочным селектором (опять же, идентичным крайслеровской Powerflite), для чего были предусмотрены режимы Н (нейтраль), Д(движение), ЗХ (задний ход) и Т (торможение двигателем).

Кто придумал и изобрел первую в мире автоматическую коробку передач

Начало 20 века богато на изобретения в области машиностроения, и сказать, кто первым придумал коробку автомат, довольно сложно. Создание автоматической трансмиссии присваивают нескольким людям. Первым в мире транспортным средством, оснащенным полноценным «автоматом» был автобус шведского производства Лисхольм-Смит. Это был штучный экземпляр, который был придуман и сконструирован в 1928 году. Установка АКПП в серийном производстве была впервые осуществлена на автомобиле Buick Roadmaster в 1947 году.

История создания автоматической коробки передач

Первыми, кто изобрел автоматическую коробку передач, можно назвать американских братьев Стартевентов. В 1904 году они придумали первую версию АКПП и представили ее миру. По сути, эта коробка являлась усовершенственной «механикой» с двумя ступенями, переключения которых осуществлялись автоматически. Проект не был реализован в массовое производство по ряду причин.

Следующими значимыми разработками по созданию автоматической коробки занимались инженеры компании Ford. На тот момент уже был запущен в серию легендарный автомобиль «Model-T», на котором и велась отработка автоматической планетарной КПП с двумя скоростями вперед и одной назад.

Позаимствовав вариант такой трансмиссии у производителей Ford, Карл Бенц доработал экземпляр для установки его на авто «Мерседес-Бенц». Но утверждение, что именно Бенц придумал АКПП, является неверным.

Наличие гидроблока, играющего роль сцепления в АКПП, определяет начало существования классического «автомата». Первый гидротрансформатор создал немец Герман Феттингер. Его изобретение было придумано для преобразования крутящего момента от двигателя через специальные механизмы на лопасти судна. В 1902 году появилась запатентованная версия гидроблока, способного обеспечивать до 90% КПД двигателей на кораблях.

Гидродинамический механизм Феттингера, сделавший минимальными потери энергии в двигателе, в начале применялся только в судостроении. Позже этот агрегат перекочевал в отрасль автомобилестроения. Запатентовал первую в мире коробку автомат с гидротрансформатором в 1935 году армянский изобретатель Азатур Сарафян, позднее взявший себе имя Оскар Бэнкер. После того, как он придумал свое детище, еще в течение семи лет ему пришлось отстаивать право присвоить патент себе. В то же время концерн General Motors начал применять изобретение в своем производстве.

40-е и 50-е года прошлого столетия характеризуются массовым внедрением в серийное производство автомобилей с коробкой «автомат». Такая КПП устанавливалась на американские марки авто: Chevrolet, Packard, Buick, Hudson и другие.

Устройство автоматической трансмиссии

Мысль придумать автоматическую коробку приходила многим. Первые образцы механической трансмиссии переключения передач были очень сложны в управлении. Водителю приходилось самостоятельно отслеживать обороты двигателя и на определенной скорости переключать ступени. МКПП тех времен не имела синхронизаторов, что делало управление автомобилем достаточно сложным.

Первая в мире автоматическая коробка передач, запущенная в серию, устанавливалась на автомобиль концерна GM Buick Roadmaster. Это был легковой автомобиль класса люкс, который оснащался АКПП за дополнительную плату и был доступен представителям высшего общества.

На то, чтобы создать современный «автомат» ушло несколько десятилетий. Первые образцы АКПП имели ряд недостатков:

  • короткий срок эксплуатации (3-4 года);
  • неремонтопригодность;
  • повышенный расход топлива;
  • потеря мощности и разгона;
  • высокая стоимость;
  • дорогое обслуживание.

За комфорт приходилось платить, и многие люди не хотели мириться с этим. Придумать и усовершенствовать автоматическую коробку передач, адаптированную для установки на несколько марок автомобилей удалось все тем же инженерам компании GM. Она получила название Hydra-Matic. Название акцентировало наличие в данном агрегате гидромуфты. Планетарная коробка работала в паре с гидротрансформатором. Тормозные механизмы плавно затормаживали пониженную ступень, а повышение давления рабочей жидкости обеспечивало одновременное включение следующей скорости. Ступеней стало четыре, и для них были придуманы соответствующие обозначения: Low, Low-Overdrive, High, High-Overdrive. Передача «Reverse» отвечала за задний ход.

Уже в 60-х годах придумали и стали применять коробки переключения с синтетической смазкой, что сделало их более надежными и увеличило их ресурс.

В середине шестого десятилетия была изобретена трансмиссия с привычным обозначением передач на панели коробки:

Буквенное обозначение на корпусе АКПП Расшифровка
P Parking – режим парковки
R Reverse – задний ход
N Neutral – нейтральный режим
D Drive – движение вперед
L Low – пониженная передача

Принцип работы АКПП

Появившиеся автомобили с более современной автоматической коробкой передач произвели настоящую революцию среди автолюбителей. Теперь управлять транспортным средством было под силу даже женщинам, которые и облюбовали этот тип КПП. Переключения коробки были плавными и почти незаметными, а набор скорости стал более динамичным.

За момент переключения передачи отвечали фрикционы и реечные механизмы, которые работали одновременно в составе гидротрансформатора и обеспечивали комфорт во время управления авто.

Даже спортивный режим вождения не мешал водителю наслаждаться скоростью, если не брать во внимание значительный расход топлива.

Первая машина с АКПП

Классический автомат был впервые установлен в серийный автомобиль Бьюик в 1947 году. Следующими подопытными авто стали Cadillac и Pontiac. После многих доработок и выявления недостатков управления трансмиссией, инженеры американского концерна придумали усовершенствованный Hydra-Matic, которым оснащались многочисленные американские и европейские марки:

Первые машины на «автомате» расходились как горячие пирожки, и уже к концу 60-х никого нельзя было удивить наличием современной трансмиссии. Создание такого полезного агрегата отразилось на манере вождения и на образе жизни автолюбителей в целом. После того, как придумали АКПП, управлять транспортным средством было легко и приятно.

Среди обеспеченных людей было уже в порядке вещей приобрести себе свой первый автомобиль, оснащенный автоматической коробкой передач. Появилось новое поколение автолюбителей, которые никогда не управляли МКПП, а сразу сели за руль авто с современной трансмиссией. Постепенно таких людей становилось все больше в разных странах.

Первая русская автоматическая коробка

Появление нового типа трансмиссии в США и странах Европы не могло не заинтересовать отечественных производителей автомобильной техники. Первым в СССР автомобилем, оснащенным автоматической коробкой передач был лимузин представительского класса ЗИЛ-111, выпущенный осенью 1958 года. Одним из тех, кто изобрел отечественную коробку «автомат», являлся Андрей Островцев, который возглавлял конструкторское бюро завода имени Лихачева (ЗИЛ).

Утверждение, что первую автоматическую коробку передач для отечественного автомобиля придумали советские инженеры, будет несправедливым. Они не являлись изобретателями коробки «автомат». Агрегат был заимствован с американского Packard и лишь частично доработан и адаптирован под новое транспортное средство. Он представлял собой тандем гидротрансформатора и двухступенчатой планетарной КПП.

Сам ЗИЛ-111 был прототипом той же марки авто США. Внешний облик первого советского автомобиля с автоматической коробкой передач тесно перекликался с дизайном американских кузовов тех лет. Под капотом стоял шестилитровый двигатель с V-образным расположением 8 цилиндров. Мощность ЗИЛа достигала 200 лошадиных сил, что в советское время было феноменальным показателем.

В 60-х годах прошлого века в СССР появилась первая советская Волга-21 с автоматической коробкой передач. Но и этот автомат не был придуман советскими инженерами, а заимствован у тех же американцев. Модель в свободную продажу не пустили, ограничившись небольшой партией. Для простого советского человека шанс управлять отечественным авто, оснащенным АКПП, так и не выпал.

В современной России в 2012 году появилась модель Лада Гранта с автоматической коробкой переключения передач. Тольяттинский концерн АвтоВАЗ не стал придумывать собственную разработку, а приобрел готовую японскую АКПП Jatco и установил ее на свое детище. Доступное авто и по сей день имеет высокий уровень продаж среди жителей России.

Современная автоматическая коробка передач представляет собой отлаженный механизм, управляемый специальным электронным блоком. С помощью многочисленных датчиков коробка-автомат способна контролировать рабочие режимы и выводить необходимую информацию на экран бортового компьютера авто.

Были придуманы 5-ти, 6-ти, 7-ми и даже 8-ми ступенчатые АКПП, которые позволяют водителю наслаждаться плавным разгоном и комфортной управляемостью транспортным средством любого назначения:

  • легковые авто;
  • малотоннажные грузовики;
  • внедорожники;
  • дорожная и сельскохозяйственная техника;
  • микроавтобусы и полноразмерные автобусы.

Обслуживание автоматической коробки переключения скоростей в специализированных центрах и использование качественных расходных материалов и трансмиссионных жидкостей обеспечивает ее бесперебойную работу на протяжении многих лет.

Изобретатели коробки автомат и их многочисленные последователи на протяжении нескольких десятилетий придумывают новую конструкцию и адаптируют этот механизм под современную жизнь человека. Даже сегодня этап разработки АКПП нельзя назвать законченным.

История АКПП ч.1-я

Вскоре после создания первых автомобилей возникло желание автоматизировать управление ими путем создания автоматических коробок передач.

Эта сложная техническая проблема решалась самыми различными способами. Существует множество конструкций полностью автоматических или частично автоматизированных коробок передач. В этих конструкциях используются различные принципы преобразования работы автомобильного двигателя в тяговое усилие на колесах автомобиля. В качестве механизмов реализации такого преобразования используются фрикционные вариаторы, муфты свободного хода, цепные устройства и т.д. Особо отметим, что более 100 лет назад делались первые опыты по применению на автомобилях гидравлических передач объемного типа (имеются немецкие патенты 1897 г.). В конце 19-го века на первой автомобильной выставке в Берлине демонстрировался автомобиль с объемной гидравлической передачей системы Питлер. В 1919 г. был построен и испытан автомобиль с объемной гидропередачей системы Ленца. Примером объемной гидропередачи может служить система, использующая поршеньковые насос и мотор (рис.1).

Читать еще:  Особенности и ремонт кпп «ока»: что нужно знать

Объемная гидравлическая передача Дженни применялась на танках времен первой мировой войны.

Объемные гидропередачи не получили распространения на автомобилях из-за дороговизны, сложности изготовления, жесткости характеристик, большого нагрева систем. Не получили сколько-нибудь заметного распространения и другие упомянутые выше конструкции, основанные на других принципах.

Широкое распространение получили лишь гидромеханические передачи, состоящие из гидродинамического трансформатора, механических передач и системы управления. На долю таких передач приходится более 95% (по некоторым оценкам 99%) всех выпускаемых в мире автомобильных трансмиссий. Именно такие трансмиссии за рубежом называются автоматическими трансмиссиями, автоматическими передачами или, чаще всего, автоматическими коробками передач.

Рис.1 Схема объемной гидравлической передачи

Идея и конструкция гидродинамического трансформатора (ГДТ) — принципиально нового механизма, сделавшего возможным создание гидромеханических передач (ГМП) ныне применяемых типов пришла в автомобилестроение их другой области техники — из судостроения.

В конце 19 века в морском флоте в качестве корабельного двигателя все чаще стали применять быстроходные паровые турбины вместо прежних тихоходных паровых машин. Паровые машины соединялись с гребными винтами судов напрямую. Оборотность гребных винтов увеличить не удавалось и для соединения их с более высокооборотными паровыми турбинами требовался дополнительный механизм.

Высокооборотные шестеренные передачи большой мощности тогда делать не умели. Высказывалось предложение использовать гидравлические лопастные машины, чтобы двигатель вращал колесо лопастного насоса и работа двигателя переходила в энергию жидкости, прокачиваемой насосом. Далее эта жидкость направляется в лопастную турбину, в которой энергия жидкости преобразуется в механическую энергию, используемую для вращения гребного винта.

В лопастном насосе (рис.2) основными деталями являются подвод 1, лопастное колесо 2 и отвод 3. По подводу жидкость подается от всасывающего трубопровода к лопастному колесу. Из отвода жидкость через диффузор 4 поступает в напорный трубопровод. В лопастном колесе жидкость движется от центра к периферии, поэтому колесо (и весь насос) называют центробежным. Уплотнение 5 предотвращает наружные утечки.

Рис.2 Схема центробежного насоса консольного типа


Рис.3 Схема радиально-осевой гидравлической турбины

В гидравлической турбине (рис.3) жидкость поступает в спиральную камеру 1 и лопастное колесо 3 с верхнего бьефа ВБ. Отдавая энергию, жидкость приводит во вращение вал 4. Перед колесом установлен направляющий аппарат 2. Жидкость в колесе движется от периферии к центру (центростремительное колесо). Пройдя колесо, жидкость через отсасывающую трубу 5 сливается в нижний бьеф НБ.


Рис.4. Принципиальная схема гидродинамической передачи

Соединение насоса и турбины трубопроводами дает гидродинамическую передачу (рис.4). Такая передача теоретически возможна, но она не имеет практического смысла из-за чрезвычайно низкого коэффициента полезного действия (КПД). В начале 20-го века, когда обсуждалась такая возможность, лучшие насосы на лучших режимах работы имели КПД около 65%, а лучшие турбины около 80%. Поэтому общий КПД гидродинамической передачи такого вида даже на наилучших режимах работы не превысил бы 50%, что совершенно неприемлемо.


Рис.5. Схема гидродинамического трансформатора (гидротрансформатора)

Выходом явилось изобретение проф. Г.Фетингером (Германия) новой гидравлической машины, объединяющей в одном корпусе все лопастные колеса гидродинамической передачи — насос, турбину, направляющий аппарат (реактор) — рис.5. В такой машине (патент 1902 г.) исключены потери энергии в трубопроводах, спиральных камерах, подводах и отводах, что почти вдвое увеличило КПД конструкции по схеме рис.5 по сравнению с КПД конструкции по схеме рис.4. В первой осуществленной конструкции (1908 г.) мощностью 100 л.с. был получен КПД 83% при максимальном коэффициенте трансформации Ко = 5. В 1912 г. на пассажирском пароходе «Тирпиц» КПД составил 88,5%. Позже на пароходе «Висбаден» при мощности 15 000 — 20 000 л.с. гидродинамический трансформатор имел КПД 91,3%.

Направляющий аппарат ГДТ (чаще называемый реактором) соединен с неподвижным корпусом и участвует в динамическом взаимодействии с потоком жидкости, изменяя его направление. При этом взаимодействии на реакторе возникает крутящий момент, благодаря чему момент на выходном валу не равен моменту на входном валу, т.е. происходит трансформация крутящего момента. Если реактора нет, то трансформации крутящего момента не происходит и крутящие моменты на насосном и турбинном колесах равны.

Гидродинамическая передача без реактора также была запатентована Г.Фетингером и получила название гидродинамической муфты (ГМ) — рис.6.


Рис.6 Схема гидродинамической муфты (гидромуфты)

Как гидротрансформатор, так и гидромуфта, передают мощность при отсутствии жесткого соединения входного и выходного валов, благодаря чему двигатель и приводимая машина защищены от вредных динамических перегрузок. Это продлевает срок службы машин. Возможность бесступенчатого и плавного изменения частоты вращения выходного вала позволяет гидродинамическим передачам выполнять функцию редуктора, упрощать и облегчать работу операторов машин. Эти преимущества побудили к использованию гидромеханических передач на автомобилях.

Успеху в применении ГМП на автомобилях способствовала возможность автоматического перехода гидротрансформатора в режим гидромуфты. Это достигается установкой реактора ГДТ на муфте свободного хода. Когда коэффициент трансформации становится равным единице, направление потока на входе в реактор совпадает с направлением потока на выходе из него, крутящий момент на колесе реактора меняет свой знак и реактор начинает свободно вращаться в потоке рабочей жидкости — гидротрансформатор превратился в гидромуфту, имеющую значительно более высокий КПД (до 98%). Такие ГДТ получили название комплексных. Первым таким ГДТ (начало 30-х годов) был ГДТ Трилок (рис.7.), использовавший потом в ряде конструкций ГМП.


Рис.7 Гидротрансформатор Трилок

Первая автомобильная ГМП системы инж. Ризеллера (1925 г.) представляла собой ГДТ в комплекте с планетарной механической коробкой передач (рис.8).


Рис.8 ГМП системы Ризеллера мощн. 40 л.с. для автобуса Мерседес

В 1926 г. инж. Ризеллер установил подобную же передачу на автомобиль Бюик с двигателем мощностью 60 л.с. (рис.9). Турбина ГДТ в этой конструкции состоит из двух рабочих колес 2 и 4. Схема допускает переход на режим гидромуфты и блокировку ГДТ (механизм блокировки на схеме не показан).

Рис.9 Схема комплексной ГМП системы Ризеллер мощностью 60 л.с. для автомобиля Бюик

Приведенные схемы автомобильных ГМП предполагают использование после гидротрансформатора нескольких механических передач, так как у гидротрансформатора типа Трилок, получившего в 20-е годы наибольшее распространение, коэффициент трансформации недостаточен для эффективного обеспечения всех режимов движения автомобиля. Особенно это отмечалось при эксплуатации автобусов. Возникла нужда в гидротрансформаторе с большим коэффициентом трансформации, при котором городской автобус мог бы разгоняться только на гидротрансформаторе (без переключений передач) и дальше ехать на прямой механической передаче также без переключений передач. Такой гидротрансформатор был создан в 1928 году шведской фирмой Лисхольм-Смит (рис.10). Он состоит из насосного колеса, двух реакторов и трех турбинных колес, соединенных вместе и сидящих на одном валу. Рабочая жидкость последовательно проходит насосное колесо — первая ступень турбины — первый реактор — вторая ступень турбины — второй реактор — третья ступень турбины снова насосное колесо.


Рис.10 Схема гидротрансформатора типа Лисхольм-Смит

Гидротрансформаторы типа Лисхольм-Смит нашли широкое применение в ГМП для автобусов в Европе (Лейланд-Англия с 1933 г., Крупп-Германия) и в США (GMC). Выпуск автобусов с такими ГДТ быстро нарастал — в США в 1939 г. 192 автобуса, в 1940 г. — 488, в 1945 г. — 1269 (всего был выпущен 17641 автобус). ГДТ типа Лисхольм-Смит оказался особенно удобен для автобусов тем, что из-за его большого коэффициента трансформации (почти пятикратное увеличение крутящего момента двигателя при трогании автобуса с места) можно весь разгон автобуса осуществлять только на ГДТ — не используя каких-либо промежуточных механических передач, а после достижения заданной скорости переходить непосредственно на прямую передачу. На рис.11 приведена конструкция ГМП с ГДТ типа Лисхольм-Смит для автобуса с задним поперечным расположением двигателя.


Рис.11 ГМП с ГДТ типа Лисхольм-Смит для автобуса.

При работе на режиме ГДТ крутящий момент двигателя через правый фрикционный диск сцепления передается на насосное колесо ГДТ, далее через ГДТ, муфту свободного хода, расположенную на выходном валу турбинного колеса, и конические шестерни передается к ведущему мосту автобуса. При достижении автобусом заданной скорости (обычно 24-31 км/ч) электропневматическая система управления ГМП переключает сцепление на левый фрикционный диск, жестко связанный через центральный вал непосредственно с ведущей кони ческой шестерней. Муфта свободного хода при этом расклинивается и турбинное колесо перестает вращаться.

Конструкция ГМП по схеме рис.11 применялась несколько десятилетий. Для современных ГМП любых типов, в том числе и автобусных, характерно применение в механической части нескольких передач. Толчком к развитию работ по ГМП для легковых автомобилей в США послужила рекламная компания выдающегося американского автомобильного конструктора Таккера, объявившего в 1947 г. о создании им перспективного автомобиля «Таккер-48» с ГМП. Таккеру удалось изготовить только 50 автомобилей с ГМП на базе автомобилей Бюик. Далее инициативу перехватили крупные автомобильные корпорации и фирмы. Первым массовым легковым автомобилем с ГМП был автомобиль Бюик 70 Родмастер. Выпуск его начался в 1947 г. Он был оборудован гидропередачей «Дайнафлоу» (рис.12), имел комплексный одноступенчатый пяти-колесный ГДТ (насос Н1, турбина Т, два реактора Р1 и Р2, вспомогательный насос Н2). Вспомогательный насос Н2, установленный на муфте свободного хода на ступице основного насоса Н1, в начале движения автомобиля свободно вращается на муфте свободного хода, улучшая условия входа рабочей жидкости на лопатки основного насоса Н1. При дальнейшем разгоне муфта заклинивается и оба насоса вращаются как единое целое. Предполагалось, что это расширит зону высокого КПД.

В ГМП «Дайнафлоу» две механические ступени, но по сути дела она является одноступенчатой, так в основном она работала на прямой передаче в механической части. Имевшаяся в ГМП понижающая передача включалась водителем только в случае необходимости вручную (могла включаться и на ходу). Дальнейшего распространения такие ГМП не получили. Стали создаваться и совершенствоваться ГМП с автоматическим переключением передач.
В настоящее время только такие конструкции считаются современными и называются автоматическими коробками передач. Первые автоматические коробки передач были двухступенчатыми. По мере повышения требований к динамическим свойствам автомобилей и по мере совершенствования конструкций ГМП (в том числе и ГДТ) число ступеней стало увеличиваться до трех, затем до четырех. Имеются конструкции с пятью, шестью и более ступенями. В США автоматическими коробками передач (ГМП) снабжаются 85-90% легковых автомобилей, почти все городские автобусы, значительная часть грузовых автомобилей. В Европе оборудуются ГМП большая часть городских автобусов и около 25% продаваемых легковых автомобилей. В Японии оборудуются ГМП около 30% продаваемых легковых автомобилей. ГМП производят почти все крупные фирмы — изготовители автомобилей и большое число фирм, специализировавшихся на производстве автомобильных трансмиссий.

История АКПП ч.1-я

Вскоре после создания первых автомобилей возникло желание автоматизировать управление ими путем создания автоматических коробок передач.

Эта сложная техническая проблема решалась самыми различными способами. Существует множество конструкций полностью автоматических или частично автоматизированных коробок передач. В этих конструкциях используются различные принципы преобразования работы автомобильного двигателя в тяговое усилие на колесах автомобиля. В качестве механизмов реализации такого преобразования используются фрикционные вариаторы, муфты свободного хода, цепные устройства и т.д. Особо отметим, что более 100 лет назад делались первые опыты по применению на автомобилях гидравлических передач объемного типа (имеются немецкие патенты 1897 г.). В конце 19-го века на первой автомобильной выставке в Берлине демонстрировался автомобиль с объемной гидравлической передачей системы Питлер. В 1919 г. был построен и испытан автомобиль с объемной гидропередачей системы Ленца. Примером объемной гидропередачи может служить система, использующая поршеньковые насос и мотор (рис.1).

Читать еще:  Двигатель не заводится: причины и наиболее распространенные неисправности

Объемная гидравлическая передача Дженни применялась на танках времен первой мировой войны.

Объемные гидропередачи не получили распространения на автомобилях из-за дороговизны, сложности изготовления, жесткости характеристик, большого нагрева систем. Не получили сколько-нибудь заметного распространения и другие упомянутые выше конструкции, основанные на других принципах.

Широкое распространение получили лишь гидромеханические передачи, состоящие из гидродинамического трансформатора, механических передач и системы управления. На долю таких передач приходится более 95% (по некоторым оценкам 99%) всех выпускаемых в мире автомобильных трансмиссий. Именно такие трансмиссии за рубежом называются автоматическими трансмиссиями, автоматическими передачами или, чаще всего, автоматическими коробками передач.

Рис.1 Схема объемной гидравлической передачи

Идея и конструкция гидродинамического трансформатора (ГДТ) — принципиально нового механизма, сделавшего возможным создание гидромеханических передач (ГМП) ныне применяемых типов пришла в автомобилестроение их другой области техники — из судостроения.

В конце 19 века в морском флоте в качестве корабельного двигателя все чаще стали применять быстроходные паровые турбины вместо прежних тихоходных паровых машин. Паровые машины соединялись с гребными винтами судов напрямую. Оборотность гребных винтов увеличить не удавалось и для соединения их с более высокооборотными паровыми турбинами требовался дополнительный механизм.

Высокооборотные шестеренные передачи большой мощности тогда делать не умели. Высказывалось предложение использовать гидравлические лопастные машины, чтобы двигатель вращал колесо лопастного насоса и работа двигателя переходила в энергию жидкости, прокачиваемой насосом. Далее эта жидкость направляется в лопастную турбину, в которой энергия жидкости преобразуется в механическую энергию, используемую для вращения гребного винта.

В лопастном насосе (рис.2) основными деталями являются подвод 1, лопастное колесо 2 и отвод 3. По подводу жидкость подается от всасывающего трубопровода к лопастному колесу. Из отвода жидкость через диффузор 4 поступает в напорный трубопровод. В лопастном колесе жидкость движется от центра к периферии, поэтому колесо (и весь насос) называют центробежным. Уплотнение 5 предотвращает наружные утечки.

Рис.2 Схема центробежного насоса консольного типа


Рис.3 Схема радиально-осевой гидравлической турбины

В гидравлической турбине (рис.3) жидкость поступает в спиральную камеру 1 и лопастное колесо 3 с верхнего бьефа ВБ. Отдавая энергию, жидкость приводит во вращение вал 4. Перед колесом установлен направляющий аппарат 2. Жидкость в колесе движется от периферии к центру (центростремительное колесо). Пройдя колесо, жидкость через отсасывающую трубу 5 сливается в нижний бьеф НБ.


Рис.4. Принципиальная схема гидродинамической передачи

Соединение насоса и турбины трубопроводами дает гидродинамическую передачу (рис.4). Такая передача теоретически возможна, но она не имеет практического смысла из-за чрезвычайно низкого коэффициента полезного действия (КПД). В начале 20-го века, когда обсуждалась такая возможность, лучшие насосы на лучших режимах работы имели КПД около 65%, а лучшие турбины около 80%. Поэтому общий КПД гидродинамической передачи такого вида даже на наилучших режимах работы не превысил бы 50%, что совершенно неприемлемо.


Рис.5. Схема гидродинамического трансформатора (гидротрансформатора)

Выходом явилось изобретение проф. Г.Фетингером (Германия) новой гидравлической машины, объединяющей в одном корпусе все лопастные колеса гидродинамической передачи — насос, турбину, направляющий аппарат (реактор) — рис.5. В такой машине (патент 1902 г.) исключены потери энергии в трубопроводах, спиральных камерах, подводах и отводах, что почти вдвое увеличило КПД конструкции по схеме рис.5 по сравнению с КПД конструкции по схеме рис.4. В первой осуществленной конструкции (1908 г.) мощностью 100 л.с. был получен КПД 83% при максимальном коэффициенте трансформации Ко = 5. В 1912 г. на пассажирском пароходе «Тирпиц» КПД составил 88,5%. Позже на пароходе «Висбаден» при мощности 15 000 — 20 000 л.с. гидродинамический трансформатор имел КПД 91,3%.

Направляющий аппарат ГДТ (чаще называемый реактором) соединен с неподвижным корпусом и участвует в динамическом взаимодействии с потоком жидкости, изменяя его направление. При этом взаимодействии на реакторе возникает крутящий момент, благодаря чему момент на выходном валу не равен моменту на входном валу, т.е. происходит трансформация крутящего момента. Если реактора нет, то трансформации крутящего момента не происходит и крутящие моменты на насосном и турбинном колесах равны.

Гидродинамическая передача без реактора также была запатентована Г.Фетингером и получила название гидродинамической муфты (ГМ) — рис.6.


Рис.6 Схема гидродинамической муфты (гидромуфты)

Как гидротрансформатор, так и гидромуфта, передают мощность при отсутствии жесткого соединения входного и выходного валов, благодаря чему двигатель и приводимая машина защищены от вредных динамических перегрузок. Это продлевает срок службы машин. Возможность бесступенчатого и плавного изменения частоты вращения выходного вала позволяет гидродинамическим передачам выполнять функцию редуктора, упрощать и облегчать работу операторов машин. Эти преимущества побудили к использованию гидромеханических передач на автомобилях.

Успеху в применении ГМП на автомобилях способствовала возможность автоматического перехода гидротрансформатора в режим гидромуфты. Это достигается установкой реактора ГДТ на муфте свободного хода. Когда коэффициент трансформации становится равным единице, направление потока на входе в реактор совпадает с направлением потока на выходе из него, крутящий момент на колесе реактора меняет свой знак и реактор начинает свободно вращаться в потоке рабочей жидкости — гидротрансформатор превратился в гидромуфту, имеющую значительно более высокий КПД (до 98%). Такие ГДТ получили название комплексных. Первым таким ГДТ (начало 30-х годов) был ГДТ Трилок (рис.7.), использовавший потом в ряде конструкций ГМП.


Рис.7 Гидротрансформатор Трилок

Первая автомобильная ГМП системы инж. Ризеллера (1925 г.) представляла собой ГДТ в комплекте с планетарной механической коробкой передач (рис.8).


Рис.8 ГМП системы Ризеллера мощн. 40 л.с. для автобуса Мерседес

В 1926 г. инж. Ризеллер установил подобную же передачу на автомобиль Бюик с двигателем мощностью 60 л.с. (рис.9). Турбина ГДТ в этой конструкции состоит из двух рабочих колес 2 и 4. Схема допускает переход на режим гидромуфты и блокировку ГДТ (механизм блокировки на схеме не показан).

Рис.9 Схема комплексной ГМП системы Ризеллер мощностью 60 л.с. для автомобиля Бюик

Приведенные схемы автомобильных ГМП предполагают использование после гидротрансформатора нескольких механических передач, так как у гидротрансформатора типа Трилок, получившего в 20-е годы наибольшее распространение, коэффициент трансформации недостаточен для эффективного обеспечения всех режимов движения автомобиля. Особенно это отмечалось при эксплуатации автобусов. Возникла нужда в гидротрансформаторе с большим коэффициентом трансформации, при котором городской автобус мог бы разгоняться только на гидротрансформаторе (без переключений передач) и дальше ехать на прямой механической передаче также без переключений передач. Такой гидротрансформатор был создан в 1928 году шведской фирмой Лисхольм-Смит (рис.10). Он состоит из насосного колеса, двух реакторов и трех турбинных колес, соединенных вместе и сидящих на одном валу. Рабочая жидкость последовательно проходит насосное колесо — первая ступень турбины — первый реактор — вторая ступень турбины — второй реактор — третья ступень турбины снова насосное колесо.


Рис.10 Схема гидротрансформатора типа Лисхольм-Смит

Гидротрансформаторы типа Лисхольм-Смит нашли широкое применение в ГМП для автобусов в Европе (Лейланд-Англия с 1933 г., Крупп-Германия) и в США (GMC). Выпуск автобусов с такими ГДТ быстро нарастал — в США в 1939 г. 192 автобуса, в 1940 г. — 488, в 1945 г. — 1269 (всего был выпущен 17641 автобус). ГДТ типа Лисхольм-Смит оказался особенно удобен для автобусов тем, что из-за его большого коэффициента трансформации (почти пятикратное увеличение крутящего момента двигателя при трогании автобуса с места) можно весь разгон автобуса осуществлять только на ГДТ — не используя каких-либо промежуточных механических передач, а после достижения заданной скорости переходить непосредственно на прямую передачу. На рис.11 приведена конструкция ГМП с ГДТ типа Лисхольм-Смит для автобуса с задним поперечным расположением двигателя.


Рис.11 ГМП с ГДТ типа Лисхольм-Смит для автобуса.

При работе на режиме ГДТ крутящий момент двигателя через правый фрикционный диск сцепления передается на насосное колесо ГДТ, далее через ГДТ, муфту свободного хода, расположенную на выходном валу турбинного колеса, и конические шестерни передается к ведущему мосту автобуса. При достижении автобусом заданной скорости (обычно 24-31 км/ч) электропневматическая система управления ГМП переключает сцепление на левый фрикционный диск, жестко связанный через центральный вал непосредственно с ведущей кони ческой шестерней. Муфта свободного хода при этом расклинивается и турбинное колесо перестает вращаться.

Конструкция ГМП по схеме рис.11 применялась несколько десятилетий. Для современных ГМП любых типов, в том числе и автобусных, характерно применение в механической части нескольких передач. Толчком к развитию работ по ГМП для легковых автомобилей в США послужила рекламная компания выдающегося американского автомобильного конструктора Таккера, объявившего в 1947 г. о создании им перспективного автомобиля «Таккер-48» с ГМП. Таккеру удалось изготовить только 50 автомобилей с ГМП на базе автомобилей Бюик. Далее инициативу перехватили крупные автомобильные корпорации и фирмы. Первым массовым легковым автомобилем с ГМП был автомобиль Бюик 70 Родмастер. Выпуск его начался в 1947 г. Он был оборудован гидропередачей «Дайнафлоу» (рис.12), имел комплексный одноступенчатый пяти-колесный ГДТ (насос Н1, турбина Т, два реактора Р1 и Р2, вспомогательный насос Н2). Вспомогательный насос Н2, установленный на муфте свободного хода на ступице основного насоса Н1, в начале движения автомобиля свободно вращается на муфте свободного хода, улучшая условия входа рабочей жидкости на лопатки основного насоса Н1. При дальнейшем разгоне муфта заклинивается и оба насоса вращаются как единое целое. Предполагалось, что это расширит зону высокого КПД.

В ГМП «Дайнафлоу» две механические ступени, но по сути дела она является одноступенчатой, так в основном она работала на прямой передаче в механической части. Имевшаяся в ГМП понижающая передача включалась водителем только в случае необходимости вручную (могла включаться и на ходу). Дальнейшего распространения такие ГМП не получили. Стали создаваться и совершенствоваться ГМП с автоматическим переключением передач.
В настоящее время только такие конструкции считаются современными и называются автоматическими коробками передач. Первые автоматические коробки передач были двухступенчатыми. По мере повышения требований к динамическим свойствам автомобилей и по мере совершенствования конструкций ГМП (в том числе и ГДТ) число ступеней стало увеличиваться до трех, затем до четырех. Имеются конструкции с пятью, шестью и более ступенями. В США автоматическими коробками передач (ГМП) снабжаются 85-90% легковых автомобилей, почти все городские автобусы, значительная часть грузовых автомобилей. В Европе оборудуются ГМП большая часть городских автобусов и около 25% продаваемых легковых автомобилей. В Японии оборудуются ГМП около 30% продаваемых легковых автомобилей. ГМП производят почти все крупные фирмы — изготовители автомобилей и большое число фирм, специализировавшихся на производстве автомобильных трансмиссий.

Ссылка на основную публикацию
Adblock
detector